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Section 1. Background

§1A. Philosophy

Let me start off by saying that the continuum hypothesis (CH) is independent of the generally agreed upon assumptions
of ZFC. What this means is that the axioms of ZFC do not determine whether CH holds in the same way the group
axioms do not determine commutativity. Contained in this is the assumption that ZFC is consistent, something which
is also not provable from ZFC. In this way, ZFC is not the end-all-be-all of what can be understood or known. inking
about these independent propositions is then similar to thinking as a scientist. Science does not have direct access to
how the world works: they must conjecture, and come up with theories to explain the facts. We too do not have access
to the truth or falsity of such propositions, so we must look at the surrounding evidence, conjecture, and form beliefs
as a result.

What is presented here is not a proof that CH is false, but instead some counter-intuitive consequences that make some
believe that CH is false. Of course, what is unintuitive for one may be intuitive for another. ere are also a whole
host of more complicated set theoretic reasons some have for thinking CH is false, and in particular for thinking that
jRj D ℵ2 (cf. [4]). Such reasons cannot be presented in a meaningful way in an hour, and I admit that I don’t think
they are all that convincing to non-set theoristsi.

ere are other reasons for thinking that CH is false that are not motivated by results of CH, but instead by unintuitive
propositions which imply CH. In particular, there is the notion of Gödel’s constructible universe, L. As the name
suggests, this universe is constructed level by level by, instead of the full powerset, taking definable subsets. While
the set theoretic universe is form by the recursion, taking  as a limit ordinal,

V0 D ;, V˛C1 D P .V˛/, V D
[

˛<
V˛ ,

L is formed by having L˛C1 D ¹X � L˛ W X is definable over L˛º. e resulting hierarchy of constructible sets L
satisfies CH, and in fact the generalized continuum hypothesis (GCH), which states that the cardinal after � is always 2� .

i e set theory class in the 2019 Spring semester spent at least half of the course proving that jRj D ℵ2 from some unrelated forcing axioms,
for example. e actual fact of whether such axioms apply is provably unprovably consistent relative to the consistency ZFC.
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e assumption that the universe of sets V D L is unpopular, and seemingly wrong by the principle of maximization:
L is the smallest inner model of ZFCii, so why should the universe of all abstract objects consist merely of what is
necessary from the axioms? It would seem that the actual set theoretic universe couldn’t be constructed merely by
formulas in this way. One way to easily reject V D L is then to reject one of its consequences, like CH.

ere are other heuristics for thinking that CH—and more generally GCH—is false. ere are theorems due to forcing
that show that jRj can be any cardinal of uncountable cofinalityiii. It would seem strange for jRj to be as small as
it possibly could. ere are other theorems, which relate jRj to the cardinality of other things. For example, jRj is
the cardinality of countable, linear orders up to isomorphism. ℵ1 is the number of countable ordinals. It would seem
strange for the number of countable linear orders, of which there are many strange and complicated structures, to be
the same as the number of countable well-orders, which are all very neatly organized and easy to describe.

I’m putting these more heuristic, non-mathematical arguments here at the beginning just to cover my bases, and note
that there are a lot of things not covered in this document. I want the rest of the document to focus on some fun,
unintuitive, easy-to-prove results of CH in fields other than set theory rather than the minutia of how to think about
independence results. Most of these are classic results found in [3].

§1B. An introduction to transfinite recursion

As CH is a statement about the ordinal !1, it will be useful to review transfinite recursion and transfinite induction.
Ordinals are originally understood as well-orders, and are initial segments of each other. In this way, we have the
defining property that for any set of ordinals, there is a least memberiv. is defining property is useful mostly because
it allows us to conclude the following result.

1B • 1. Theorem

For any ordinal ˛, one of the following holds:
• ˛ D 0;
• ˛ D ˇ C 1 for some ordinal ˇ, meaning ˛ is a successor ordinal; or
• ˛ D supˇ<˛ ˇ, meaning ˛ is a limit ordinal.

And this in turn allows us to use this characterization to come up with constructions stage by stage just by specifying
what happens at each stage: at successor stages, and at limit stages. is idea is called transfinite recursion, and is a
theorem of ZFC stated in the clumsy, proper way.

Transfinite recursion can be used for all sorts of constructions. For example, the V˛s just mentioned above. Taking
V0 D ;, and V˛C1 D P .V˛/ with limits as unions defines the entire universe of sets: V D

S
˛2Ord V˛ . For another

example, we can grow the tree of binary sequences of length !1.

Let T0 D ¹ƒº where ƒ is the empty-sequencev. For T˛ already defined, let T˛C1 be the set of all elements of T˛

extended by 0, and extended by 1:
T˛C1 D T˛ [ ¹f _0 W f 2 T˛º [ ¹f _1 W f 2 T˛º ,

where x_y denotes concatenation. For limit ordinals ˛, define T˛ D
S

ˇ<˛ Tˇ . e resulting tree T!1
is the binary

tree of height !1 when the elements are ordered by end-extension.

For a final example, we can talk about the sequence of ℵs or !s. Starting with !0 D !, we can define by transfinite
iiBy an inner model, I just mean a transitive model which contains all the ordinals of V. It being the smallest is a result of the absoluteness of

its construction: any transitive inner model will necessarily contain L. A more general result is that of condensation, saying that even in smaller
models, you must contain L up to whatever ordinal is your class of ordinals.

iii is just means that we can't write jRj as the countable union of subsets of size < jRj, something trivially true under ZFC C CH, but provable
from ZFC alone as well. And in fact, this one provable barrier is the only barrier for what jRj could be.

iv e ordering of the ordinals is 2, set membership.
vIn traditional set theoretic interpretation, ƒ is just the empty set.
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recursion, for  a limit,
!˛C1 ��D the least ordinal of cardinalty > !˛

! D
[
˛<

!˛ .

In the context of cardinality, j!˛j D ℵ˛ .

Section 2. Easier Results

§2A. Covering real numbers

Formulated as jRj D ℵ1, CH is a statement about real numbers, and so it’s appropriate that our results will be about
real numbers. Often such results can really be considered properties of ℵ1 formulated as results about R. For example,
the next result is like this.

2A • 1. Result

(ZFC C CH) e plane R2 is the countable union of functions from the x-axis to the y-axis, and functions from
the y-axis to the x-axis.

Proof .:.
Since jRj D ℵ1, by doing the result on ℵ1, we can just apply a bijection to get the result forR. Now each ordinal
˛ < !1 is countable, and so we get a surjection f˛ W ! ! ˛. But then the map sending ˛ to f˛.n/ for a fixed
n is a perfectly legitimate map from !1 to !1. Yet there are only countably many such maps: Fn.˛/ ��D f˛.n/

for n 2 !. Moreover, each h˛; ˇi for ˇ < ˛ is the result of some Fn.˛/, since each f˛ was a surjection onto
˛: f˛.n/ D ˇ for some n, and so Fn.˛/ D ˇ. erefore, we have covered the lower triangle of the plane.

To get the upper triangle, we just do the same process for the y-axis, and thus get a covering of ℵ1 � ℵ1 by
2 � ℵ0 D ℵ0 functions. So by applying the bijection with R, we get the result for R. a

2A • 2. Result

(ZFC C CH) R can be colored by countably many colors such that there are no a; b; c; d 2 R of the same color
such that a C b D c C d (where a, b, c, and d are all distinct).

Proof .:.
Proceed by transfinite recursion of length !1 to color all points of R. By CH, let ¹r˛ W ˛ < !1º enumerate
the elements of R. Note that the closure of a countable set under countably many operations is still countable.
In particular, each set X˛ D ¹rˇ W ˇ < ˛º for ˛ < !1 is countable. So if we take the closure of X˛ under
addition and subtraction, we get a set R˛ � R which is still countable, and we still have the property that
R D

S
˛<!1

R˛ .

Define a coloring by transfinite recursion. Note that R0 D ; already has its elements colored. At limit stages,
R˛ D

S
ˇ<˛ Rˇ , so at this stage, the elements of R˛ are already colored. For successors, color each element

of R˛C1 n R˛ a color different from the rest of R˛C1 n R˛ from a fixed countable rainbow. Since R˛C1 n R˛

is countable, we can do this.

Note that for x D a C b � c 2 R˛C1, we can’t have all the a; b; c 2 R˛ , since this would imply x 2 R˛ by
closure under addition and subtraction. us there would need to be, say, a 2 R˛C1 which would then get a
different color from x.
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Because we’re using colors from a set countable rainbow, we aren’t ever introducing colors, and the result is
that R is colored in a way that satisfies the statement. a

e above result isn’t too unintuitive in general, since we could just color each point of R a different color. e key
thing that is surprising is that we’re using only countably many colors. is same process can be generalized to other
kinds of “colorings”, though we might have to be more careful than just assigning colors arbitrarily.

2A • 3. Result

(ZFC C CH) ere is a coloring of R2 with countably many colors, such that there are no a; b; c; d 2 R2 of the
same color with dist.a; b/ D dist.c; d/ (where a, b, c, and d are all distinct).

Proof .:.
Enumerate R2 D ¹r˛ W ˛ < !1º. For A � R2, let

D.A/ ��D ¹dist.a; b/ 2 R W a; b 2 Aº,
the set of distances between points of A. For each countable set X � R2, we can take the closure C under
triangles with distances within X . is means that if a; b 2 C , and dist.a; c/; dist.b; c/ 2 D.C /, then c 2 C .
is closure, denoted C.X/, will still be countable. is can be visualized below, where c 2 C.X/ n X .

c
a

b
X

Let X˛ D ¹rˇ W ˇ < ˛º for ˛ < !1. From this sequence, define the sequence of hC˛ W ˛ < !1i by C˛ D

C.X˛/. We thus get that R D
S

˛<!1
C˛ , and each C˛ is countable. We will color according to the differences

C˛C1 n C˛ . For ˛ a limit, C˛ D
S

ˇ<˛ Cˇ is already colored. C0 D ; is also already colored, so we only need
to deal with the successor case.

For ˛ C 1, for each of the countably many elements of C˛C1 n C˛ , give each a distinct color from our fixed,
countable rainbow. We must be careful about how we do this, though, because we might accidentally color a
point the same distance from some others previously colored, as below.

red \ C˛

x
u

red \ C˛

xu

blue \ C˛

w

Just avoid red Impossible

To avoid this, note that for each x 2 C˛C1 n C˛ , there can’t be two points in C˛ forming with distances to x

already found in D.C˛/ just by construction of C˛ . But there might be a color red where an element already
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colored, u 2 C˛ , whose distance to x can already be found in red \ C˛ , meaning dist.x; u/ 2 D.red \ C˛/. In
this case, we shouldn’t color x red. Note that there can be only one color like this, though, since the existence
of two such colors would imply x 2 C˛ by construction: dist.x; u/; dist.x; w/ 2 D.C˛/ implies x 2 C˛ , as
above.

So write C˛C1 n C˛ D ¹xn W n < !º, and for each xn, let cn be the corresponding color that needs to be
avoided, and then set the color of xn to be cnC1. We also need to establish that all the cns are distinct, but this
is easy enough, since if the color xn needs to avoid has already been listed, then set cn as any arbitrary color
not in ¹ci W i < nº. a

2A • 4. Result

(ZFC C CH) e plane R2 can be colored with two colors such that every horizontal line contains only countably
many red points, and every vertical line contains only countably many blue points.

Proof .:.
By CH, enumerate R D ¹r˛ W ˛ < !1º. Set

Red D ¹hr˛; rˇ i W ˛ < ˇ < !1º,
Blue D ¹hr˛; rˇ i W ˇ � ˛ < !1º.

Consider the horizontal line H D R � ¹rˇ º D ¹hx; rˇ i W x 2 Rº. For hx; rˇ i 2 H \ Red, we must have that
x D r˛ for some ˛ < ˇ, which means that H \ Red is countable, since ˇ < !1. Similarly, for the vertical line
V D ¹r˛º � R D ¹hr˛; yi W y 2 Rº, hr˛; yi 2 V \ Blue iff y D rˇ for some ˇ � ˛. But again, that’s only
countably many possible reals. Hence V \ Blue is countable too. a

Another interesting fact is that all three of the above results Result 2A • 1, Result 2A • 2, and Result 2A • 4 are indi-
vidually equivalent to CH. In fact, we can generalize Result 2A • 4 to various bounds on the continuum [2].

§2B. Weird sets of reals

Denote lebesgue measure by �, calling �-measure 0 sets justmeasure 0. e following set of reals is called a sierpiński
set after Wacław Sierpiński, who showed this result. e existence of a sierpiński set does not require CH, but if sets
of size < jRj are measure 0, then its existence implies CH.

2B • 1. Result

(ZFC C CH) ere is an uncountable subset A � R where every �-measure 0 subset B � A is countable.

Proof .:.
Every set of measure 0 is included in a Gı set (a countable intersection of open sets) of measure 0, and there
are jRj Gı sets. By CH, we can enumerate the measure 0 sets in Gı by ¹X˛ W ˛ < !1º. Note that as a countable
union, for each ˛ < !1,

S
ˇ<˛ Xˇ is a set of measure zero.

So for each ˛ < !1, let y˛ 2 R n
S

ˇ<˛ Xˇ . Now consider Y D ¹y˛ W ˛ < !1º which is uncountable of
cardinality ℵ1. Each measure 0 set Z � R is contained in some X˛ for ˛ < !1, and hence Y \ Z � Y \ X �

¹yˇ W ˇ � ˛º is countable. a

2B • 2. Result

(ZFCC CH) ere is an uncountable A � R such that any uncountable subset B � A is dense in an open interval
of R.

Proof .:.
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Note that there are only jRj D ℵ1 nowhere dense sets, being the boundaries of open sets which are themselves
countable unions of open intervals. So we can consider the closure of the nowhere dense sets, and enumerate
these: ¹N˛ W ˛ < !1º D ¹N � R W N is nowhere denseº. Just as before, we can then construct the sequence
a˛ 2 R n

S
ˇ<˛ N˛ , and consider A D ¹a˛ W ˛ < !1º.

Note that if B � A is nowhere dense—i.e. is not dense in any open interval of R—then B D N˛ for some
˛ < !1. But then

B D B \ A D N˛ \ A � ¹aˇ W ˇ � ˛º

is a countable set. a

It might be tempting to do some sort of Cantor set like subset for such a set, but it simply isn’t possible under CH. Such
a set is really given by the existence of a luzin set of reals, a set which only countably intersects every first-category
set. Luzin sets, named after Николай Лузин (Nikolai Luzin), exist under CH, like sierpiński sets. And CH turns out to
be equivalent to their existence so long as all sets of reals of size < jRj are first-category.

Section 3. Harder Results

3 • 1. Result

(ZFC C CH) ere is an uncountable family F of entire functions (in the sense of differentiable on all of C) such
that for each z 2 C, the set of values at z is always countable: j¹f .z/ W f 2 F ºj D ℵ0.

Proof .:.
Because jCj D jRj � jRj D ℵ2

1 D ℵ1 under CH, enumerate C D ¹c˛ W ˛ < !1º. Let Q.i/ D Q C Qi , the
rational complex numbers (or whatever they’re called). We will define entire functions hf˛ W ˛ < !1i such that
for ˇ < !1,

¹f˛.cˇ / W ˛ < !1º � Q.i/ [ ¹f .cˇ / W  � ˇº

In other words, we will only consider new values at cˇ from those already defined, or from Q.i/. Because both
Q.i/ and ¹f .cˇ / W  � ˇº are countable, this gives the result.

To show this, proceed by recursion. Having dealt with the values of cˇ and functions fˇ for ˇ < ˛ < !1, as
this is only countably many values, reorder to get the values and functions

¹cˇ W ˇ < ˛º D ¹dn W n < !º and ¹fˇ W ˇ < ˛º D ¹gn W n < !º.
e function f˛ will be an infinite sum of the form

f˛.z/ D "0.z � d0/ C "1.z � d0/.z � d1/ C � � �

for small enough h"n W n 2 !i defined recursively to ensure the series converges. To do this, for each n < !,
suppose "0; � � � ; "n�1 have been chosen. Choose "n such that

gn.dnC1/ ¤ "0.dnC1 � d0/ C � � � C "n.dnC1 � d0/.dnC1 � d1/ � � � .dnC1 � dn/ 2 Q.i/,
and such that "n is small enough. In other words, we are diagonalizing out of the fˇ s while remaining in Q.i/

at cˇ for ˇ < ˛. Once we have the resulting infinite sequence h"n W n 2 !i, we can define f˛.z/ for all z, not
just z D dn for n 2 !. To show that we can choose "n small enough, just let

j"nj � nn.1 C jd0j/ � � � .1 C jdnj/ < 1=2n.
We then have for n > jzj,ˇ̌

"n.z � d0/ � � � .z � dn/
ˇ̌

� j"nj.n C jd0j/ � � � .n C jdnj/

� j"njnn.1 C jd0j/ � � � .1 C jdnj/ < 1=2n.
is means that f˛.z/ is defined for every z 2 C. is gives the construction. Now that we have f˛ for ˛ < !1,

we can consider whether the property holds of F D ¹f˛ W ˛ < !1º.
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So let cˇ 2 C be arbitrary. At later stages ˛ > ˇ, we defined f˛ on all c for  < ˛ to be in Q.i/. Hence
f˛.cˇ / 2 Q.i/. erefore

¹f˛.cˇ / W ˇ < ˛ < !1º � Q.i/.
At earlier stages ˛ � ˇ, since ¹f .cˇ / W  � ˇº is countable (as ˇ < !1), there are only countably many
possible values of f˛.cˇ /. Hence

¹f˛.cˇ / W ˛ < !1º � Q.i/ [ ¹f˛.cˇ / W ˛ � ˇº.
So there are only countably many possibilities for the value f˛.cˇ / for f˛ 2 F , and thus the result holds. a

is marks the last proof of this document, but I think it’s interesting to at least list a some more consequences of CH
that can’t really be proven in this kind of time frame. e proofs aren’t hard to find, however, with proofs of the next
two in [3], a proof of Result 3 • 5 in [5], and an overview of Kaplansky’s Conjecture (3 • 4)—with references to the
actual proofs—found in [1].

3 • 2. Result

(ZFC C CH) ere is a function f W R ! R such that for all x 2 R,
lim
h!0

max.f .x � h/; f .x C h// D 1.

3 • 3. Result

(ZFC C CH) ere is a surjection F W R ! R2 of the form F.x/ D hf .x/; g.x/i such that for all x 2 R, either
f or g is differentiable at x.

is next result is one that helped show the independence of Kaplansky’s conjecture (on banach algebras) from ZFC.
In particular, CH disproves the conjecture.

3 • 4. Result (Kaplansky's Conjecture)

Let X be an infinite, compact Hausdorff space with C.X/ the space of continuous functions from X to C.
If CH holds, then there is an incomplete norm on C.X/. In other words, CH implies there is a norm non-equivalent
to the k k1 norm on C.X/.

Note that all complete norms on C.X/ are equivalent to the k k1 norm.

3 • 5. Result

Let En be a field for n 2 !. If CH holds, the global dimension of the direct product
Q

n<! En is 2.
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